MHD-pumped, high-speed ingestion of plasmafrom wall gas source into spheromak interior:Observations and model

P. M. Bellan, Caltech co-authors: S. You, G. Yun

US-Japan CT Workshop, September 14, 2004 Santa Fe, NM

Taylor Relaxation:

"magical process" whereby magnetic fields spontaneously self-organize into a magnetic confinement configuration

- -energy minimized
- -helicity conserved

Taylor Relaxation initial condition:

Taylor Relaxation final condition: spheromak

Axisymmetric magnetic confinement configuration Relaxation conserves helicity

Issues in Taylor relaxation

- 1) Plasma is just "there"
 - but how did plasma get in?
- 2) Uniform pressure (zero beta)
 - <u>but</u> need pressure gradients for confinement
- 3) Symmetry
 - <u>but</u> Cowling's theorem shows that symmetry must be broken to create poloidal flux
- 4) Relaxation changes topology to spheromak
 - <u>but</u> how does topology evolve?

Goal: address these issues

Method: build <u>simplest</u> helicity injection system and follow fast dynamics in detail

Helicity injection requirement:

voltage-biased electrodes must link magnetic flux (helicity injection rate = $2V\Psi$)

Simplest system

- 1. coaxial, co-planar electrodes
- 2. gas puff valves

Results

1. Find kink instability is fundamental to relaxation and to topological evolution

- toroidal to poloidal flux conversion (Hsu/Bellan 2003)
- basic mechanism for relaxation to spheromak

2. Find high speed plasma inflows (jets) are a critical feature

- driven by JxB forces which ingest plasma from wall source
- inflow velocity $\sim v_A$, 10-10² times neutral gas acoustic velocity
- gas source geometry critically affects plasma geometry
- closely related to astrophysical jets

3. Find uniform plasma assumption is inappropriate

- stagnation of flow gives jet collimation, extremely high localized density
- get bright, dense, collimated flux tubes

Experimental Setup

Side View

Installation

Sequence

Puff in neutral gas Neutral spatial/temporal profile measured using fast ion gauge probe

Breakdown, "spider leg formation"

Spider legs get bigger

Spider legs merge to form central column

Central column lengthens

 $I \sim 100 \text{ kA}$

Doppler Shift Measurement

Velocities ~ 15-60 km/s observed

Doppler Shift Measurement

Velocities ~ 15-60 km/s observed

Example of Doppler shift data

Blue: $4861.15 \implies -11.3339$ [km/s] (blue shift)

Red: $4861.54 \Rightarrow 13.165 \text{ [km/s] (red shift)}$

Kink Instability of Central Column

Kink instability of central column, cont'd

Kink occurs when central column becomes sufficiently long to satisfy Kruskal-Shafranov instability condition

$$q = \frac{2\pi R}{L} \frac{B_{\phi}}{B_{z}}$$

S. C. Hsu & P. M. Bellan MNRAS 334, 257 (2002)

movie showing collimated jet and kink instability

D plasma, mid lambda, 2-15.5 us [3 shots, 48 frames]

Neutral density profile <u>measured absolutely</u> using <u>calibrated fast ion gauge probe</u>

Question: Where does plasma come from?

shows there is no gas here initially, i.e., near vacuum

Toroidal flux injection

gun current creates toroidal flux

- voltage across electrodes = rate at which toroidal flux is injected
 - coil creates poloidal flux Ψ linking toroidal flux
 - helicity injection rate =2 $V\Psi$

Mass influx

- toroidal flux is frozen into plasma
 - toroidal flux injection implies there must be plasma injection also
 - this is the key concept
- need source of plasma: gas nozzle is the source for ingested plasma
- gas source properties control magnetic properties

Collimation

- Plasma and toroidal flux frozen together
- Pile-up (traffic jam) of ingested plasma corresponds to a converging flow, compression
- Embedded toroidal flux is also compressed, strengthening toroidal magnetic field
- This causes collimation (I~rB_φ=constant)
- Very high densities in a filamentary flux tube (substantial Stark broadening observed)

canted JxB force gives axial thrust

Like squirting toothpaste from a toothpaste tube

Jet flow and collimation

 $B_{azimuthal}$ amplification

 $\Rightarrow r$ decrease to keep $\mu_0 I = 2\pi r B_{azimuthal}$ constant

 At breakdown see plasma jets coming from gas valves on central disk

 Jets stagnate, spider leg becomes collimated

Dense, hot plasma in collimated spider leg

collimated, dense flux tube

Central column jet formation

hoop force increases major radius, form central column jet

Gas source is crucial

- spheromak mass ingested at Alfvenic velocity
- neutral density profile
 - determined by thermal gas jet
 - must be adequate for breakdown
- plasma density profile
 - determined by MHD pumping
 - no relation to initial neutral gas profile

Plasma jets from nozzles

Nitrogen injected from disk gas nozzles

Neon injected from annulus gas nozzles

Four (of eight) outer nozzles valved off

10 million frames/sec

Summary

- Kink instability fundamental to relaxation, topological evolution
- 2. Gas source of critical importance
- High speed inflows (jets)
- 4. Stagnation of jet inflow leads to collimated flux tube
- 5. Uniform plasma assumption not appropriate

Publications

Observation/identification of kink instability:

"A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets", S. C. Hsu & P. M. Bellan,

MONTHLY NOTICES ROYAL ASTRONOMICAL SOCIETY **334**, 257 (2002)

Kink-induced toroidal-to-poloidal flux conversion:

"Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation"

S. C. Hsu & P. M. Bellan, PHYS. REV. LETTERS, 90 (21): art. no. 21500 (2003)

Theory of jet acceleration and collimation:

"Why current-carrying magnetic flux tubes gobble up plasma and become thin as a result",

P. M. Bellan,

PHYS. PLASMAS 10 Pt 2, 1999 (2003)

Measurements of jet acceleration and collimation:

- -manuscript to be submitted shortly
- -reports measurements of:
 - neutral density profile (fast ion gauge)
 - jet velocity (Doppler shifts, high speed movies)
 - plasma density (Stark broadening)